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ABSTRACT

A method for accurate numerical integration is proposed and
illustrated by a variety of examples. The method depends on an
ability to efficiently evaluate the weights and abscissas of
Gaussian quadrature formulas, and software to achieve this pur-

pose is also presented.
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I, INTRODUCTION

A considerable number of problems of physical and engineer-~

ing interest require as part of their solution the accurate

evaluation of definite integrals of the form

ff(X)dx, [*] P

R

where R is a closed region of one or more dimensions. Typical
cases have R = a compact or infinite interval in one dimension,
and R = a rectangular or spherical solid in higher dimensions.
3 In applications, the integral [*] may yield percentage points
M

of a probability distfibution, the autocorrelation of a signal,
f“ a one or two dimensional convolution of a éignal with a filter
response function, the intensity of graybody radiation emitted
into a particular waveband (Planck integral), certain thermo-
! dynamic lattice sums, etc.

Usually it is desired that the computed value of [*] be

accurate to so many digits (prescribed relative error) or to

so many decimal digits (prescribed absolute error). The only

; ' way that a user can be certain that this requirement is satisfied
is to have available an error formula for the integration rule
being employed, and to verify that the integrand and the order

of the rule are such that the error term is sufficiently small.

(In making this last statement we are assuming negligible round-
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off error.) Now typically the classical error term ( for inte-
gration over intervals) involves a small coefficient multiplied
by a high order derivative evaluated at an unknown point in the
interval of integration. Hence in practice the maximum modulus
of this derivative must be computed or at least bounded. And
in practice this task is usually impossible, due to the complexity
of the intergrand.

One way out of this difficulty (for the case where R is a
compact interval) is available when the integrand f extends to
an analytic function on some neighborhood of R. Complex variable
methods (related to the Cauchy integral formula) then often per-
mit bounds on the error in terms only of the values of £, and not
of its derivatives. Furthermore, the errof term will tend ex-
ponentially to zero, as the order of the integration rule in-
creases. Unfortunately, it is not always the case that our in-

tegrand is analytic.

This note will present a procedure for resolving the problem
of fast accurate quadrature for integrands which are reasonably
smooth but not necessarily analytic. 1In the absence of smooth-
ness (i.e., if there are discontinuities in the first derivative,
or in one of the first partial derivatives, if the integrand is
a function of several variables), our method will not have favor-

able convergence pronerties, and should not be employed. In the
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case of integration over a compact interval, one would then be
better advised to utilize a trapezoidal-type rule, such as
(adaptive) Romberg integration [1, § 6.3]. Software for such a
procedure is available in the International Mathematical and
Statistical Library (IMSL) under the title DCADRE.

In brief, our method is based on observation of the con-
vergence of a sequence of Gauss-type quadratures with appropriate
weight function., For this to be practical it is necessary to
have available a fast procedure for generating the abscissas and
coefficients of a Gaussian formula of a given order. Such a
procudure is given below; it is based on suggestions of Wilf
[2] and Golub-Welsch [3] to convert this problem to an eigen-
analysis of a certain (symmetric) matrix.A

The original motivation for this work came from the (two-
dimensional) problem of accurately computing the overall output
of an optical detector (4, § 6.2.2.1l.1]]. This output is the con-
volution of the detector response function and the irradiance
function H. In the important speciai case of a rectangular
detector this convolution reducés to the integration of H over
the (rectangular) detector surface. Our method, described below,
was proposed as an alternative to the use of fast Fourier trans-

form techniques, with their arbitrary sampling decisions and

arparent lack of suitable error theory.
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IT. REVIEW OF GAUSSIAN QUADRATURE THEORY

This section contains a brief exposition of convergence and
error analysis for Gaussian integration formulas. No attempt
has been made to write a small text on the subject! For further
background the sources [l, 5, 6, 7] may be consulted. 1In general
the recent monograph [l1] is an excellent source of information

about all aspects of the quadrature problem,

2.1 Basic Theory

Let I be an interval of real numbers and let w be a weight
function on I, that is, w(x)>0 and_fxnw(x)dx is finite for
n=0,1,2,+»+. Then there exists a iequence {pn(x): n=20,1,2,
.s.} Of polynomials of degree n with are orthonormal on I with

respect to w, in the sense that

.{pm(x) pn(x) w(x)dx = (Smn ’ (2.1)

for all m,n, = 0,1,2,++¢., These p, are unique up to a sign, and
we shall adjust this sign so that the coefficient kn of x" in

P, is positive. The p, can be computed either by applying the
Gram-Schmidt procedure to the monomials {x™} or by use of a

recurrence relation




P (x) = (ax +b)p _,(x)=-c p_,(x) (2.2)

where a sC, # 0, p_l(x) =0, po(x) = (j;w(x)dx)-%. This re-
currence will be very important to us below. Let us now just
note one special relation between the coefficients a, and c,
that follows from the normality of the Ppe Namely, by multiply-
ing both sides of (2.2) by p,w and by Ph-¥ and integrating over

I, we obtain

1l = a 1 fopn_l(x) Po-o (X)w(x)dx,
I

o
l

a_ Ifxpn_l(x) P_y(X)u (x)Ax = c_,

whence

(2.3)

Now consider the n x n tridiagonal symmetric (Jacobi) matrix

-bl/al c2/a2 0 0 oo 0
c2/a2 -bz/az c3/a3 0 oo 0
A =
0 c3/a3 -b3/a3 c4/a4 .o 0
_ 0 0 . cn/an -bn/an_J
' 5
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Using (2.3) the reccurrence relation (2.2) can be rewritten in

the matrix-vector format

C
AP(x) = xP(x) + a“”
n+l

pn(x) (2.4)

HO e OO
-

where P(x) = (p (x), Py (X),ec., pn_l(x))T. From (2.4) we con-
clude that a real number X, is a root of P, exactly when it is 1
an eigenvalue of A, [2,3].
The reason for our interest in the roots of P, is of course
that they comprise the abscissas of the corresponding Gauss
quadrature rules. The nth Gauss quadraturg formula is a (pos-

itive) linear functional whose value at a continuous function

f is
n \
L (n) (n)

G (f5u) = kz=:1wk £(x, ™), (2.5)

where
k -1
0 cu ™ = B o ™y e T, M) T, 1cken.
n

With this choice of weights {wk(n)} and abscissas {xk(n)} it is

well known [1] (see also § 3.2 below) that




° £02n) (g)
Jr f(x)wx)dx = G_(f;w) + — a<f<b (2.6)
a n (2n) ! kn

provided that a,b are finite and f has 2n continuous derivatives
on [a,bl. A particular import of (2.6) is that the Gauss rule

of order n exactly integrates every polynomial of degree < 2n - 1,
This is the famous optimality property of Gauss rules: they are
exact for polynomials of as large a degree as is possible with

a formula of the type (2.5) (there are only 2n free parameters

in (2.5)).

[ T

2,2 Error Analysis

Let E,(f) denote the error in uniform approximation on
[a,b] to the continuous function f by polynomials of degree
< n. If p is such a polynomial then the error in nth order

Gauss quadrature, EGn(f;w), satisfies

b
|EG (f:0) | = lf £(x)w(x)dx - G_(£50) |
a

b
[ tm-pexemiax] + |6, (F-piw) |
a

A

A

b n
(./ wi{x)dx + Z wk(n)) max |f(x)-p(x) |
a

k=1 a<x<b




b
=2f w(x)dx ||f-p|]_.
a

This being true for all polynomials of degree < 2n-1, we

conclude that
b
|EG_(f5w) | < 2/ w(x)dx + E, o (f) (2.8)
a

The advantage of (2.8) over (2.6) is first, that there is no
derivative assumption made about £, and second, that upper bounds
for the error can always be obtained by use of (2.7). Of course
the best theoretical estimates of En(f) depend on derivative in-
formation about f ("Jackson's theorems", [é]).

In the most favorable situation for Gaussian quadrature on
a compact interval [a,b], the integrand f is (the restriction of)
an analytic function on [a,b]. Then it is known ("Bernstein's
theorem", [6]) that the quantities En(f) decrease very rapidly;

precisely,
n
En(f) L Kay,
for positive constants K and g, with g < 1. Hence, by virtue

of (2.8) the Gauss quadratures of f converge at essentially a

geometric rate ("r-linear convergence") to the true value of




b
j. f(x)w(x)dx. (There is in fact an extensive literature on error
a

estimates for Gauss quadratures of analytic functions, giving
more precise versions of this fact; see [8] for a recent con-
tribution.,)

The last two paragraphs strongly suggest that Gaussian
quadrature will be most effective for integrands which exhibit
polynomial behavior, and this is certainly true in a practical
sense, when computation time is an issue. But, in fact, the
estimate (2.8) and the Weierstrass approximation theorem show
that

b
lim G_(f;w) =~/ﬁ f(x)w(x)dx. (2.9)
n-»o n a ’

holds true whenever f is a continous function on [a,b]. Indeed,

(2.9) is valid whenever fw is Riemann integrable on [a,b] [2].

2.3 Double Integrals

Let us now consider the problem of numerically evaluating a
multiple integral over a rectangular region R = [c¢,d] x [a,b].
The ensuing discussion applies as well to solid rectangular
regions in 3 ox more dimensions, and integrals over other types
of regions can frequently be reduced to integrals over rectangular

ones by means of appropriate transformations of coordinates

(1, § 5.4]).




A standard approach to evaluation of

./.J[ f(x,y)w (X)w(y)dx dy (2.10)
c

a

is to apply one-dimensional quadrature formulas to the functions

f(x,*) and f(+*,y). The resulting formula is known as a product

rule [1, § 5.6, 10, § 2,.3] and in the case that each one-
dimensional formula is Gn(';w), we can obtain the product Gauss

formula
n n
(2) e,y = (n) (n) (n) <0
c!?) (£;0) lf::l Z; M o™, %) (2.11)

as an approximation to (2.10). Although tﬁe theory of multivariate
polynomial approximation is not as well developed as the single
variable case, there is still a Weierstrass theorem. Hence,

since (2.11) will integrate any polynomial p(x,y) exactly provided

that n is sufficiently large, we may conclude that

b d
1im 6\™) (£;w) =ff £(x,y) 0 (x)w(y)dxdy, (2.12)
n->w
for all continuous functions on R.

What about the validity of (2.12) when the integrand in
(2.10) is merely Riemann integrable? The difficulty here is that

this assumption need not imply that the sections f(x,y)w(x) and

10
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Hence,

f(x,y)w(y) be integrable on [c,d] and [a,b], respectively.
in general there will be no reason to expect the product Gauss

rule to converge. But suppose that the integral (2.10) is well

enough behaved to obey the Fubini iterated integrals formula:

b4 b d
ff f(x,y)w(x)w(y)dxdy =f (‘/ f(x,y)w(x)dx)w(y)dy. (2.13)
c a ¢

a

Denoting the inner integral in (2.13) by f(y), we can compute

Gn(f;o) for a sufficiently large n; then we can approximately
l,...,n by Gaussian formulas

compute each value f(xén)) for k

Gm(f(w,xén))) for sufficiently large m. In this way we can

conclude that

n m b d
lim lim Z Z wj0. f(xjfm), xi(n’) =fa_/; £(x,y)w(x)w(y)dxdy.

This convergence result is clearly less satisfactory than (2.12)

although it could be used in practice provided (2.13) could be

verified.

2.4 Infinite Interval

Finally we consider the matter of the validity of the con-
This is not covered by the

vergence formula (2.9) when b = =,
eavlier analysis on account of the non-compactness of the in-~
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terval [(a,~)., However, it is shown in [5, § III.1l] that for a
class of positive quadrature rules which includes the important
special case of the Gauss-Laguerre formula with weight function
w(x;a) = xre ¥ {a>=1), convergence is obtained for every function
f such the f(*)w(-;a) is Riemann integrable on [a,~), and f has
at most polynomial growth at . The proof depends on being able

to "squeeze" f between two polynomials: plifipzv such that

j;sz(x) - pl(x))w(x;a)dx is arbitrarily small.

III., THE PROPOSED METHOD

Armed with this theoretical underpinning of convergence
theory we can in practice proceed to evaluate an integral of the
form [{*] (Introduction) by simply observing the behavior of a
sequence of approximations Gn(f;w): n=l, 2,... , and terminating
the process when |G ., (fiw) - Gn(f;w)l < ¢, for some preassigned
tolerance €. There are several caveats to be mentioned here.
First, this termination criterion cannot conclusively prove that
Gn(f;w) is adequately close to [*] (cf. the discussion in [1, §
6.1]). It is always possible to construct ad hoc counterexamples.
Nevertheless, this does not seem to be a difficulty in practice,
although it would be safer to require that the termination
criterion above hold for 2 or 3 successive values of n. Second,
there is the matter of choice of weight function, especially when

one is not obviously present to begin with. Third, there is the

12
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need to be able to efficiently generate the weights and abscissas
necessary to fully specify the value Gn(f;w) for various values of
n. Finally, this method should, as already noted, only be applied
in cases where the integrand f is reasonably smooth; otherwise
convergence is likely to be too slow to be useful.

The choice of weight function will be discussed in the
following sections. As to the third point just raised, the key
here is the use of the eigenvalue problem shown in formula (2.4).
By computing the eigenvalues of the Jacobi matrix A we obtain the
abscissas of the corresponding Gauss formula. Further it is
known that

T
1 = wén) P(xén)) P(Xén)):

where P(x) was defined just after (2.4). Hence

(n) _ (n) (n)
Q. = V‘*’kn P(x. ")

is a normalized eigenvector of A corresponding to the eigenvalue

xén). By considering just the first component of P(xén)) we can

conclude that

(n) 2

o =fIw<x>dx- ™).

13
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. In other words, the various weights w

én) associated with the

Gauss formula Gn(';w) can be obtained as the constant j}w(x)dx
times the square of the first component of a system of n
orthonormal eigenvectors associated with the matrix A.

FORTRAN codes illustrating this procedure for several weight
functions and numerical illustrations of the whole method will
be given in the ensuing sections, along with further discussion.
It is important to appreciate the ease and accuracy with which 1
the weights and abscissas can be computed in this manner. Earlier
efforts were much slower. They typically involved the use of
some root finding scheme, such as Newton's method, applied
directly to locate each zero of the relevant polynomial. All the
usual attendant difficulties arose here, sﬁch as the need for a
sufficiently accurate starting value. This was particularly a
problem in trying to locate the zeros of the generalized Gauss=-
Laguerre polynomials (corresponding to the weight function
w{x;a) = xae-x, o > =1, on [0,»)), as these tend to drift off to
infinity as either o or n increase. See, for example, the dis-

cussion in [1l1l].

14 i
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IV, GAUSS-CHEBYSHEV QUADRATURE

We first look at the case where the weight function w(x) =

X
(l-xz) on [~1l, 1]. Thus the resulting quadrature formula (2.5)

will approximate

. (3.1)

The orthonormal polynonials associated with this w are the well-

known Chebyshev polynomials:

pn(x) = ‘/-%Tn(x) = V% cos (n cds—lx), n>1

pO(X) = ‘l—l- .
v

In this case we may clearly write down the roots of Ph ( = the

by

abscissas of the corresponding Gauss formula) by inspection:

2k~1
2n

£ (™)

= cos( T 1<k<n.

k(n) = TT/n'

Further, although less obvious, the associated weights w
1<k<n, independently of k [6, v.2, ch.5]. It is interesting that

this is the only case where this property of the weights holds

15
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true (assuming the interval is fixed as [-1, 1 ]; this is Posse's
theorm {6, v.2, Ch.61]).
Combining all this information the general formula (2.6) here

appears as

fl f(x)dx _ 7 Enf(cos(Zk_l T)) + 2T g(2n) (£) (3.2)
-1 ‘71-x2 n = 2n a®(2n):
2n

for some |£| < 1, provided £ ¢ C°"'[-1, 1]. This formula is re-
markable because the weights and abscissas appear in closed form;
the eigenanalysis of the preceding section is not needed here for

their computation.

4.1 Program and Examples

Exhibit 1 gives a short FORTRAN program which enables a user to

th

calculate an n order Gauss-Chebyshev approximation to any in-

tegral of the form
b
f g(y)dy: (3.3)
a

the programs accepts a, b, and n as inputs and calculates the
corresponding quadrature (after an appropriate change of variable),
Because in general the integral (3.3) does not contain the weight

function w as a factor, it is introduced artifically in the FUNC=-

1
H
g
i
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PROGRAM TO DO ONE DIM. GAUSS-CHEBYSHEV QUADRATURE

COMMON A, B

URITE(6,1)

FORMAT(1X, 'ONE DIM. GAUSS-CHEBYSHEVU QUADRATURE’,/~/,
§1x%, ’INPUT LOUER AND UPPER END POINTS’)
READ(S,x) R ,B

WRITE(E,2)

FORMAT(1X, ' INPUT ORDER OF G-CHB. FORMULA’)
READ(S,3) N

CALL TIMES(D1,T1,IV,IT)

PI2 = ASIN(1.)

GNF = 0.

B0 S K={,N

XKN = COS((28K-1)XPI2/N)

ANF = QNF + F(XKN)

CONTINUE

QNF = QNFX(B-AXPIE/N

CALL TIMES(D2,Te,1V2,172)

ETIMN = FLOAT(IU2-1U)%x.000013

WRITE(6,18) N, QNF

FORMAT(/1X, "5-CHB. QUAD(F;,13,’; = ,F12.6)
WRITE(6,12) ETIM

FORMAT(/1X, "EXECUTION TIME = *,F7.3)
WRITE(6,20)

FORMAT (/1%, 'RESTART? INPUT Q(NO) QR 1(YESY’)
READ(S,*) NP

IF (NP _.EQ. @' STOP

GO TO 25

END

FUNCTION F/X;
COMMON A,B
Y = SK(A+B+(RB-AIXX)

ENTER INTEGRAND NEXT RS FCN. OF VY

G » 2./(2.+SINI10.34COS(-1.)¥7Y))
F s G¥SGRT!1,-X¥¥2)

RETURN

END

R; T+0.02/0.19 14:43:34

Exhibit 1

919 PAGR 1S BAST QUALLLYL rldee..

FROM 2OPY FUABLISHAD T DDL
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TION subprogram., This feature may cause the sequence of Gauss-
Chebyshev quadratures to converge more slowly than the correspond-
ing sequence of Gauss-Legendre quadratures discussed in the next
section (where the weight function = 1), but the simplicity of
formula (3.2) still is a cogent argument for its use.

Table 1 gives some sample output for an assortment of defin-
ite integrals. Since the computation was carried out in single
precision IBM 370 arithmetic, only 5 significant figures are
given. Observe that in all cases except the last convergence
{(to 5 figures) is achieved by an order 200 formula. The time
column gives the execution times required to compute the last
entry in each row., These times are a bit higher than necessary
in most cases because of the large increases in N, That is, if
we increased N more slowly, say by increments of 5 or 10, we
would generally achieve convergence to 5 places sooner than shown

in Table 1, with a correspondingly reduced execution time.

18
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4.2 Unilateral Error Bounds

A final remark about Gauss-Chebyshev quadrature pertains to
the possibility of a one-sided error bound, in the sense that for

some integrands f it may happen that either

1
f f(x)dx , (3.3)

G_(f; Chb.)
n -1 \/ l-x2

A

or

| v

1
f(x)dx
G_(f; Chb.) f —_—
for all n. For example, inequality (3.4) is valid for the first

three integrals in Table 1, and also holds for the fourth integral,

provided that n>4.

These inequalities would obviously follow from the stronger

results of monotone convergence

Gn(f; Chb.)

| A

Gn+l(f; Chb.) (3.3m)

or

Gn(f; Chb.)

| v

Gn+l(f; Chb.), (3.4m)

for all n (or, for all sufficiently large n). In this section we

20
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give some conditions of f sufficient to ensure one of the pre-
ceding inequalities (3.3) or (3.4).

In general, let

1
BG_(£; chb.) = J = Elxidx G (£; Chb.)
n -1 1-x2
be the error in the Gauss-Chebyshev rule. One expression for
EGn(f; Chb.) was given in (3.2), as a special case of (2.6)., For

the general case of Gauss-Jacobi quadrature (where the weight

function w(x) = (l—x)a (1+x)8, -l<a,B,|x|il), we can deduce (2.6)

& and hence (3.2) from the Peano kernel theorem [1l, p. 18] which

permits us to write
1 (n) (2n)
EG_(f;w) = K £ {t)dat (3.5)
n 1w

(n)

w

2n

for every fe¢ C" (-1, 1]. Here K is a certain "kernel" which

depends on the weight fucntion w and the order n. It is known

(n) 2n-2
o

on [-1, 1], is positive for |[t]|<1l, and
(n)

in the a=B (ultraspherical) case, Km

that K is of class C

S

is an even function [12,

Ch. 4].

Now consider the special integrand f(x) = xp, p=0, 1, 2,-°+.

= e e

Apélyinq (3.5) we have
P /l (n) p=-2n
EGn(x ; w) = p(p=1l)***(p-2n+l) Km (t) dt
-1

21
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A

1
2p(p=1) ¢+« (p-2n+1) f Kufn)(t)tp-zndt > 0, if p is even,
0

0 R if p is odd,

(n)

provided that Kw

is an even function. These equations remain
true if f is replaced by any polynomial with positive coefficients,
or a limit of such polynomials. Hence, for such functions, in-
equality'(3.3) is valid (note that this result has been demon-~
strated to hold for all Gauss guadrature formulas derived from
ultraspherical polynomials, in particular for the Gauss-Legendre
rule of the next section).

A general class of integrands for which (3.3) is valid is,

for instance, the class of analytic functions f on (-1,1) with

£P ) >0, p=1,2, 3,40, . (3.6)
And by starting with f(x) = -xp, p=1, 2, 3,..., and repeating
the above analysis, we can obtain a class of functions for which
inequality (3.4) is wvalid, namely, the class of analytic functions
f for which (3.6) holds with the opposite inequality sign.,
Empirical evidence suggests that in fact the stronger inequalities

(3.3m) and (3.4m) hold for these two classes of integrands res-

pectively.

[




Another condition sufficient to ensure one of the estimates

(3.3) or (3.4) follows immediately from the error formula (3.2).
Namely, if f has derivatives of all orders on (-1, 1) and f(zn%x)
> 0 (resp. < 0) on (-1, 1), then inequality (3.3) (resp. (3.4))
is valid. 1Indeed this condition may be established for quite
general weight functions, as was originally shown by Shohat; see

[5, p. 92].
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V. _ GAUSS-LEGENDRE QUADRATURE

We next consider integration with respect to the simplest
weight function on [-1l, 1], namely w(x) = 1, In this case the

resulting quadrature formula (2.5) will approximate the integral

1l
/ f(x)dx (4.1)
-1

The corresponding orthonormal polynomials associated with this
weight function are the Legendre polynomials, They can be ex-

pressed as

_ 2n+1l .
Pn(X) = V'_f—- Pn(X), (4.2)

where

1 an
(2n)!! ax™

P_(x) = (x2-1)", (4.3)
this last expression being the Rodrigues formula [6, v.l, Ch. 15].
In order to effectively compute the abscissas and weights of
the corresponding quadrature formula (2.5), we must utilize the
eigenanalysis of part II. This means that we need the recurrence
relation (2.2) from which we can construct the Jacobi matrix A in

(2.4). Now the recurrence for the polynomials Pn in (4.3) is

24
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nP (x) = (2n-1) xP _,(x) = (n=1)P _,(x)

[6]. Combining this with the expression for the normalized

polynomials Py in (4.2) yields the desired recurrence relation:

_ {2n-1 n+ _ [n-1 n+l
P, (x) —( o ) 5n=1 XPp-1 (¥ (n) >h=3 Pp-p(X). (4.4)

From (4.4) follows the consistency relation (2.3) and from this
follows

Cc 1 n-1

A4 = =
%n  ®n-1  yJ(2n-1) (2n-3) °

=]

Since the {bn} of the general recurrence relation (2.2) are zero
here, we have all the entries available to construct the desired

matrix A.

5.1 Program and Examples

Exhibit 2 gives a FORTRAN program which enables a user to
calculate an nth order Gauss-Legendre approximation to an integral

of the form

fbf(x)dx.

a
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There are two subroutines: subroutine FORM calculates the weights
(stored in the array WGTS) and the abscissas (stored in DD);
the IMSL subroutine EQRT2S is called by FORM and performs the
required eigenanalysis on the matrix A, The program is written
in double precision because of the added complexity of the eigen-
routine.

Table 2 gives the results of using this program to compute
the same integrals as given in Table 1. The time column gives
the execution time required for the last value reported in each

Irow,

5.2 Comparison with Gauss-Chebyshev Quadrature

Naturally, Tables 1 and 2 invite comparison., Although the

evidence is limited we draw the following general conclusions:

a) Because of the artifical weight function introduced in
Gauss~Chebyshev formula, its convergence as measured by
the order of the formula (and hence the number of func-
tion evaluations) is much slower than that of the Gauss-
Legendre formula., The latter however requires added
calculation to establish the weights and abscissas.

Thus we need to decide (in advance!) whether this add-
itional calculation is worthwhile. This depends on the
integrand. As the complexity of its evaluation at
various points increases, so does the gain in using
fewer function evaluations, hence the Gauss-Legendre
formula,
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Also if the integrand is analytic on a neighborhood of
the segment [a, b)] (as are the second and third in-
tegrands in the Tables), then the rapid convergence of
Gauss~Legendre argues in its favor. These two ex-
amples show time ratios of about 3:1 in favor of Gauss-
Legendre.

c) When the integrand is analytic on (a, b) but not on
[a, b] (as are the first and fourth integrands in the
Tables), the advantage is still with Gauss-Legendre
but somewhat more narrowly.

d) When the integrand is badly behaved with respect to
polynomial approximation (as are the final two in-
tegrands), the Gauss~Chebyshev method becomes much
preferred, because of the ease with which its order

is increased.

The general error formula (2.6) for Gauss-Legendre quadrature

is

204" (a4 £(20) (4,  (4.5)

1
f f(x)dx = G (f; Lego) + 3
n ((2n) 1)~ (2n+1)

-1
for |£| < 1 and feczn[-l, 1], and this too invites comparison with
the corresponding formula (3.2) for Gauss-Chebyshev quadrature.
Let GCR (resp., GLR) be the coefficient of f(zn)(i) in (3.2)
(resp., in (4.5)), and consider the ratio GCR/GLR. Making use

of Stirling's approximation it is easy to see that
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GcR . (2n+le®™ ., fe?
GLR n n2n+1 2 ’

asymptotically as n+», This shows that eventually (that is,
for large n) the Gauss-Chebyshev formula has the smaller error

constant, although initially (for n < 10) GCR = 2GLR.

5.3 Evaluation of Double Integrals

The availability of subroutine FORM in the program of Exhibit
2 makes it very easy to implement the product Gauss formula of
(2.11) for the case w(x) = w(y) = 1, and the rectangle a<y<b,
c<x<d. Similarly one could implement a product Gauss-Chebyshev
rule, although we have not done so for this report, partly from
a reluctance to artificially introduce two weight functions, and
partly because of the increased number of function evaluations
involved in high order product integral formulas. But as before,
if too high an order of Gauss-Legendre is required for the desired
accuracy, then the advantage in computation time will pass to
Gauss-Chebyshev,

There are several alternate methods of constructing quadrature
formulas for multiple integrals [1l0]. Three popular ones are
a) choosing the weights and nodes (= points at which the integrand
is evaluated) so as to make the resulting formula exactly integrate

polynomials of a certain degree or less; b) minimizing the max-
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imum error over a certain class of possible integrands; and c)
statistical (Monte Carlo) sampling.

We looked at several methods of type a), as their theory
is the simplest (of the three general methods), and closest in
spirit to Gaussian quadrature with its greatest success for in-
tegrands having good polynomial approximation properties. Pro-

cedures for constructing quadrature rules of the form

N
Srwau - 2 0 £(R) (4.6)
R i=1 1

which are exact for all polynomials of degree < d, and for which

N is a minimum are quite involved, and in fact have only been
carried out in a few special cases ([1Q0]. Particularly interesting
from the viewpoints of accuracy and simplicity are formulas due

to Radon [10, § 3.12] and Albrecht~Collatz [10, § 8.2]. These
are 7 point (N=7 in (4.6)) formulas of degree 5 for the unit square
-1<x, y<l. That is, they will integrate any quintic polynomial

in (x, y) exactly over this square, and further, no formula of
type (4.6) with N<7 can do this.

The Albrecht-Collatz formula is

1rl - 2 25
E(x, y)dxdy = 4|2£(0, 0) + Z(f(x, 1) +
21 21

E(-r, -r) + pglf(s, =t) + £(=s, t) + £(t, =s) + £(~t, s))|,




where r? = 7/15, s = (7+\24) /15, t2 = (7-\24)/15.

In Table 3 we present results from using the product Gauss-
Legendre and the Albrecht-Collatz formulas on a few double in-
tegrals. As expected, the convergence is rapid for analytic in-
tegrands, and the Albrecht-Collatz formula usually gives an
accuracy of + .05% for such integrands, although there is no
practical way to predict its accuracy ex ante. The fourth integral
exhibits quite slow convergence due to the pole at (1, 1). The
fifth integral is typical of the sort appearing in optical de-
tection theory. It represents the output of a rectangular de-
tector; the integrand is the irradiance function, Jl is the Bessel

function of first order, and et is the obscuration factor [4].
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VI. GAUSS-LAGUERRE QUADRATURE

In this final section we consider integration over the half-
line [a, ») with the respect to the weight function w(x; o) =
o
x e ¥, The constraint o>-1 is enforced as otherwise w(e; o) is not

integrable over [a, ).

6.1 Special Features

There are two new features in the present situation: the
infinite extent of the region of integration, and the parameter
a. As already observed in paragraph 2.4, the first feature creates

difficulties in establishing the convergence

lim Gn(f; wl*; a)) = M/Qf(x)w(x; a)dx,
n-+o : a

but these difficulties are of a theoretical nature and, in any
event, have been resolved, as noted earlier.

The use of the free parameter o is of greater practical in-
terest. We have not explicitly encountered its analog before, al-
though one is present. Namely, the Chebyshev and Lengendre poly-
nomials, already used, are orthogonal over [-1,1] with respect to
the weight functions (l-xz);i and 1, respectively. Hence they are
special cases of polynomials orthogonal over [-1l, 1] with respect

to the weight function (l-x2) ¢ B>=1., Any such set of polynomials,

is called a set of ultraspherical polynomials, and in particular
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obeys a recurrence relation of the form (2.2), from which a corres-
ponding Gaussian quadrature formula could be developed as has al-
ready been done for the special cases g=-% and g=0. The only
practical effect of doing so is to slightly shift the corresponding
abscissas inside the interval [-1, 1]. (See [9, p. 121] for the
pertinent inequalities relating these abscissas to those of the
Chebyshev polynomials of the first and second kinds. These
abscissas are always symmetric (with respect to 0) for the ultra-
spherical polynomials.) Unless the weight function (l—x2)B is
explicitly present in an integrand, there seems little point to
introducing it artificially (as emphasized earlier, the case B=-%
presents a striking exception to this advice).

th

A discussion of the zeros of the n generalized Laguerre

(a)

n
(o)
n

occurs in [9, § 6.31]. 1In fact, if x is the

polynomial L én)

kth zero of L then the following bounds are known:

. 2
(By/2) (n)

n+ (o + 1)/2 < %k <

%
2 2
(k+ (a+1)/2) - 2k+a+l+ ((2k+a+l) “+4-07) ,

n+{a+l) /2

where {jk} is the sequence of positive zeros of the Bessel function

J,+ As is also known [9, § 6.21], Xén) is an increasing function

of a.
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This last property of xén) is of practical importance for
Gauss-Laguerre quadrature. For a fixed order n the location of
the abscissas can be shifted towards (or away from) the left-
hand end point by letting o decrease (resp., increase). In par-
ticular the location of the abscissas can be chosen to reasonably
coincide with the range of greatest variation of the integrand.

To illustrate this behavior of abscissas (and weights) of
Gauss~-Laguerre quadrature rules, we display in Table 4 the
abscissas and weights for several different 8 point formulas.
This tablg shows how the abscissas drift off to the right as o
increases, and also how the corresponding integrand values are
given higher weight, The right hand column gives the theoretical

sum of the weights, computed from the formula

o0

n
Z m}in;a) = fxae—xdx = T{a+l).
k=1 0

In all cases the actual sum of weights agrees with the theoretical

h decimal place. We can see

sum to within 1 or 2 units in the 6°
the sum of the weights first decreasing to a minimum (actual value
= 0.885603 when a = 0.461632), and then increasing without bound.
This information follows from standard properties of the gamma

function [13, Ch. 6].
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6.2 Program and Examples

Table 4 was derived from the FORTRAN program in Exhibit 3.

This program enables a user to compute an approximation to the

integral

/O:f(x)dx :

T

the user must supply as input a value of the parameter o, the
order N of the corresponding Gauss-Laguerre formula, and the
value T of the lower endpoint. As in the program of Exhibit 2
for Gauss-Legendre quadrature, there are two subroutines: FORM
and EQRT2S (from IMSL), which together efféct the computation
of the relevant weights and abscissas.

Table 5 displays a few examples of Gauss-Laguerre quadrature.
The first integrand is a nice entire function for which the choice
o = 0 leads to rapid convergence. The second integrand exhibits
slowly decaying oscillatory behavior and convergence is poor.
Probably o = 0 would be the default choice here too, although the
integrand is inherently badly behaved for quadrature. The next
integrand has a singularity at x = 0; the feature in general would

]

suggest a value of a < 0, and the factor x ° in the integrand in
turn leads to & = =-,5 as the preferred choice. The last integrand

is (up to a constant factor) the type occuring in integration of
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Planck's equation for radiant graybody sterance. The interval of

integration [2,~) corresponds roughly to the wavelength band

(0, 7194]. Surprisingly enough here, the "natural" choice a = 3
is considerably less effective than smaller o's. The reason for ]
this can be deduced from Table 4; since the integrand x3/(ex-1)

is rapidly decreasing after its peak at x ® 2.8, it is advantageous
to have the abscissas clustered closer to the left end point

(= 2, in our example), and as we know, this requires smaller

values of a.
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VII, FINAL EXAMPLES AND SUMMARY

In this report we have advanced a fast and efficient method
for carrying out numerical integration by means of Gaussian
guadrature., We have stressed that Gaussian methods should only
be applied in situation where the integrand has the property of
good polynomial approximation. 1In the contrary cases, when either
the integrand is insufficiently differentiable or has a singular-
ity on or near the boundary of the region of integation, other
methods should be adopted. In particular, in the first case some
version of the trapazoid rule, such as Romberg integration, might
be tried (see Introduction). On the other hand, the treatment of
singularities is often a matter of ad hoc Eechniques, several of
which are suggested in [14].

Sometimes a simple change of variable can greatly expedite
the quadrature process. We give next two final examples, both
of which can be viewed either as integrands with singularity at
one end point of a finite interval or as integrands analytic over
an infinite interval. 1In the first case the change of variables
does not help at all, while in the second case the improvement is

dramatic.
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s Example 1
1 1
1 = © =
f (1-e"X-e™ X)dx _ f (1-e "X~ x)2X
0 X 1 X

integration by our methods are given next.

Y

= ,577216,

f where y is Euler's constant. The results of three attempts at

43

Gauss-=Chebyshev
N= l 10 l 25 I 50 I 75 I 100 l 150 ¢ 200
.J Value| .,579836 | .577631| 577316 | 577257 | .577235]| .577221| .577214
{f {(time=,024 sec,)
f
& Gauss~Legendre
N= 5 6 7 | 8 9 10 11 12 l 15
! BB
. Value{,577684.577450{ ,577155(.577165 .577218?.5772277 «577218} .577214 ,577216
(time=,055 )
SeC,




Gauss-Laguerre

N= 5 6 7 s | 10 12 15 20
1
Value i
a=-.9| .52544 .55260; 56126 .56545
-.75] .52999 ! 53823 | ———| ,54848 | ,55456 %.55855 .56249 | .56635
j

i
t

=5 «53134 §.53923 «54485 ] ,54907 | ,55494 ; ,55470 | .56267| .56646

+55326 |———— | ,56149| .56555

-.25| .52840 !
! ' i
0. | 52257 .53168 ; .55009 ———— | ,55931{ ,56389

We can see from these results that conversion from the in-
terval (0,1] to [1l,») has not achieved any worthwhile results;
the Gauss-Laguerre formulas are all converéing very slowly. The
Gauss~Chebyshev method has essentially converged by N = 200; the
error in the Gth decimal place is due to the inaccuracy of the

single precision arithmetic.,
Example 2

1 o
f (log x)Max = (-1)“f yPeYay = (-1)Pn!
0 0

In this example we see that the change of variable converts an
intractable integral over (0,l1) into a very simple integral over

{0,») which can either be evaluated in closed form (using integra-
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tion by parts), or integrated very quickly and accurately by the
Gauss-Laguerre method (using either o=0 or a=n). By contrast,
observe the result of attacking the logarithmic integral directly

in the case n=4,

Gauss-Chebyshev

' i
N= ] 10 ' 25 l 50 | 100 I 150 | 200 , 300 500
I
l

Value |23.6216 ;24.4664 ' 24,3403 24,1803 ]24.1153 ‘24.0819 124,0490 | 24.0245
. ; . i

_ 1 { (time=,039 )
: i i secC.

Gauss—Legendre

2
fl
-
o
=
wn

20 i 40

i

50 ] 75 AJ 90

25 | 30
| |
Value [17.4324|19.7869 21.0005{ 21.7232 {22.1952

o

?
i22.7634
|

——ee -

23,0857 123.4809]23.6001

(time=7,45)
l séc,

|

In conclusion, if asked to recommend a single all-purpose integra-
tion routine, our choice would have to be the Gauss-Chebyshev for-
mula (even for infinite intervals, by truncation). Its simplicity

and the speed with which its order can be increased are the de-

cisive factors.




*

ACKNOWLEDGMENT

It is a pleasure to thank Dr, H. Z. Ollin for several help-

ful conversations concerning this subject matter, and for several

useful references.

46




U

io.

11.

12,

13,

14.

REFERENCES

P. Davis and P. Rabinowitz, Methods of Numerical Integration,
(Academic Press, New York, 1975).

H. Wilf, Mathematics for the Physical Sciences, (Wiley, New
York, 1962}.

G. Golub and J, Welsch, "Calculation of Gauss Quadrature
Rules", Math. Comp. 23 221-230, (1969).

K. Seyrafi, Electro-Optical Systems Analysis, Electro-
Optical Research Co., Los Angeles, CA (1973).

G. Freud, Orthogonal Polynomials, (Pergamon Press, Oxford,
England, 1971).

I. Natanson, Constructive Function Theory, Vols. 1 and 2,
United States Atomic Energy Commission Translation Series,
1961, published by Ungar, New York, 1964.

A. Stroud and D, Secrest, Gaussian Quadrature Formulas
(Prentice-Hall, Englewood Cliffs, NJ 1966).

B. Von Sydow, "Error estimates for Gaussian quadrature
formulas”, Numer. Math. 29, 59-64, (1977/78).

G. Szego, Orthogonal Polynomials (Amer. Math Society,
Providence, RI 1959),

A, Stroud, Approximate Calculation of Multiple Integrals
(Prentice-Hall, Englewood Cliffs, NJ 1971).

P. Rabinowitz and G. Weiss, "Tables of abscissas and weights
for numerical evaluation of integrals of the form

o]
Jg e-xxnf(x)dx", Math, Tables and Other Aids to Computation
13, 285-293, (1959).

A. Ghizzetti and A, Ossicini, Quadrature Formulae, (Academic
Press, New York, 1970).

M. Abramowitz and I. Stegun, Eds. Handbook of Mathematical
Functions (National Bureau of Standards, Washington, DC 1964).

F. Acton, Numerical Methods that Work (Harper and Row, New
York, 1970).




.S

i i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WhAen Data Entered)

ﬁ EPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

R-79-2

- 2. GOVT ACCESSION NO. [ 3. RECIPIENT'S CATALOG NUMBER
65 %

4. LE {and Subtitle)}
@ e >-;“"‘_.“_—”1
Practical Aspects of Gaussian Integration &

[ e e e

E OF REPORT & PERIOD wb

1‘ecm1cal%2//7”*ﬂ

6. PERFORMING ORG. REP NUMBER
Technical Notq 1979-65 7

8. CONTRACT OR GRANT NUMBER(s/

8
e

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Lincoln Laboratory, M.I.T.
P.O. Box 73
Lexington, MA 02173

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UN MBERS

Project NoJ 8X383. ZISJ/

11. CONTROLLING OFFICE NAME AND ADDRESS
Ballistic Missile Defense Program Office
Department of the Army
5001 Eisenhower Avenue
Alexandria, VA 22333

/ﬂ T REPORT OAVE — .
dL 26 Octaer B979 /

13. NUMBER OF PAGES
54

14. MONITORING AGENCY NAME & ADDRESS (if different [r nuoll»iry-_gg![i;:)

Electronic Systems Division
Hanscom AFB
Bedford, MA 01731

15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS /Continue on reverse side if necessary and identify by block number)

Gaussian integration
formulas

numerical integration
software

20. ABSTRACT (Continue on reverse side if necessary aad identify by block number)

also presented. .

AN
\

A method for accurate numerical integration is proposed and illustrated by a variety
of examples. The method depends on an ability to efficiently evaluate the weights and
abscissas of Gaussian quadrature formulas, and software to achieve this purpose is

FORM
> 0] ) 5AN 73 1473  EOITION OF 1 NOV 65 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ABT oS P




